Integer Programming and Sports Rankings
نویسندگان
چکیده
Sports rankings are obtained by applying a system of rules to evaluate the performance of the participants in a competition. We consider rankings that result from assigning an ordinal rank to each competitor according to their performance. We develop an integer programming model for rankings that allows us to calculate the number of points needed to guarantee a team the ith position, as well as the minimum number of points that could yield the ith place. The model is very general and can thus be applied to many types of sports. We discuss examples coming from football (soccer), ice hockey, and Formula 1. We answer various questions and debunk a few myths along the way. Are 40 points enough to avoid relegation in the Bundesliga? Do 95 points guarantee the participation of a team in the NHL playoffs? Moreover, in the season restructuration currently under consideration in the NHL, will it be easier or harder to access the playoffs? Is it possible to win the Formula 1 World Championship without winning at least one race or without even climbing once on the podium? Finally, we observe that the optimal solutions of the aforementioned model are associated to extreme situations which are unlikely to happen. Thus, to get closer to realistic scenarios, we enhance the model by adding some constraints inferred from the results of the previous years.
منابع مشابه
Robust Rankings for College Football
We investigate the sensitivity of the Colley Matrix (CM) rankings—one of six computer rankings used by the Bowl Championship Series—to (hypothetical) changes in the outcomes of (actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the win-loss outcome of, say, a single game between two teams, each with winning percentages below 30%, is hypothetically switch...
متن کاملDynamic programming methodology for multi-criteria group decision-making under ordinal preferences
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the crite...
متن کاملApplication of PageRank Model for Olympic Women’s Taekwondo Rankings: Comparison of PageRank and Accumulated Point Index System
Background. Although the World Taekwondo federation currently applies the APIS ranking method to calculate the Olympic rankings, some limitations exist. Objectives. This study applies the PageRank model to Olympics Taekwondo rankings. Methods. The 2015-2018 World Taekwondo Grand Prix competition results for women’s four weight classes (-49kg, -57kg, -67kg, +67kg) were used as research data, t...
متن کاملInteger Programming and Simulated Annealing for Scheduling Sports Competition on Multiple Venues
متن کامل
Rank Matrix Factorisation
We introduce the problem of rank matrix factorisation (RMF). That is, we consider the decomposition of a rank matrix, in which each row is a (partial or complete) ranking of all columns. Rank matrices naturally appear in many applications of interest, such as sports competitions. Summarising such a rank matrix by two smaller matrices, in which one contains partial rankings that can be interpret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013